Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
1.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710736

RESUMO

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Assuntos
Antibacterianos , Antineoplásicos , Nanoestruturas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Catálise , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanoestruturas/química , Escherichia coli/efeitos dos fármacos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Processos Fotoquímicos , Fotólise
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732134

RESUMO

Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.


Assuntos
Antibacterianos , Ciprofloxacina , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Relação Estrutura-Atividade
3.
Biomacromolecules ; 25(5): 2953-2964, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652682

RESUMO

Endoscopic submucosal dissection (ESD) is an effective method for resecting early-stage tumors in the digestive system. To achieve a low injection pressure of the injected fluid and continuous elevation of the mucosa following injection during the ESD technique, we introduced an innovative injectable sodium-alginate-based drug-loaded microsphere (Cipro-ThSA) for ESD surgery, which was generated through an emulsion reaction involving cysteine-modified sodium alginate (ThSA) and ciprofloxacin. Cipro-ThSA microspheres exhibited notable adhesiveness, antioxidant activity, and antimicrobial properties, providing a certain level of postoperative wound protection. In vitro cell assays confirmed the decent biocompatibility of the material. Lastly, according to animal experiments involving submucosal elevation of porcine colons, Cipro-ThSA microspheres ensure surgically removable lift height while maintaining the mucosa for approximately 246% longer than saline, which could effectively reduce surgical risks while providing sufficient time for operation. Consequently, the Cipro-ThSA microsphere holds great promise as a novel submucosal injection material, in terms of enhancing the operational safety and effectiveness of ESD surgery.


Assuntos
Alginatos , Ressecção Endoscópica de Mucosa , Microesferas , Alginatos/química , Animais , Suínos , Ressecção Endoscópica de Mucosa/métodos , Humanos , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Cisteína/química
4.
Sci Rep ; 14(1): 8598, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615146

RESUMO

Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.


Assuntos
Ciprofloxacina , Infecções por Pseudomonas , Humanos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Placas Ósseas
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587823

RESUMO

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Assuntos
Acroleína , Acroleína/análogos & derivados , Antibacterianos , Corynebacterium , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Monoterpenos , Óleos Voláteis , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Acroleína/farmacologia , Monoterpenos/farmacologia , Cimenos/farmacologia , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Vancomicina/farmacologia , Linezolida/farmacologia , Limoneno/farmacologia , Eucaliptol/farmacologia , Timol/farmacologia , Clindamicina/farmacologia , Humanos , Penicilinas/farmacologia , Terpenos/farmacologia , Cicloexenos/farmacologia , Infecções por Corynebacterium/microbiologia
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674008

RESUMO

Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.


Assuntos
Antibacterianos , Ciprofloxacina , Cisteína , Escherichia coli , Glutationa , Homeostase , Cisteína/metabolismo , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Antibacterianos/farmacologia , Meios de Cultura/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Mutação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
7.
Asian Pac J Cancer Prev ; 25(4): 1433-1440, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38680005

RESUMO

OBJECTIVE: aim of this study was to examine the synergistic effect between the antibacterial drug ciprofloxacin and the natural compound laetrile on esophageal cancer cells, specifically focusing on their combined cytotoxic effect. METHODS: The combined cytotoxic effects of two alternative incubation durations (24 and 72 hours) were studied using an esophageal cancer cell line.  Ciprofloxacin, laetrile, and their combinations were tested at concentrations ranging from 1 to 1000 micrograms/milliliter, to enhance the safety of the combination, the concentrations of the combination constituents were reduced by half compared to when they are used individually, the combination index was then calculated to estimate the components' possible synergistic effects. RESULT: The results indicate that the combined cytotoxicity of ciprofloxacin and laetrile was greater than the cytotoxicity of either ciprofloxacin or laetrile alone, the combination cytotoxicity increased with higher concentrations and longer incubation periods, in other words, the cytotoxicity pattern of the combination was time-dependent (cell-cycle specific), and concentration dependent, (cell-cycle non-specific). CONCLUSION: The study found that the combination of ciprofloxacin and laetrile had a greater inhibitory effect on the growth of esophageal cancer cells compared to ciprofloxacin or laetrile alone. This suggests a synergistic effect between the components of the mixture, which can be attributed to a complementary mechanism between the ingredients in the combination.


Assuntos
Proliferação de Células , Ciprofloxacina , Sinergismo Farmacológico , Neoplasias Esofágicas , Humanos , Ciprofloxacina/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Proliferação de Células/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células Tumorais Cultivadas , Apoptose/efeitos dos fármacos , Antibacterianos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
8.
Nanomedicine (Lond) ; 19(10): 875-893, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530883

RESUMO

Aim: To develop a biocompatible conjugated ciprofloxacin-PEG-FeO nanodelivery system with increased efficacy of available therapeutics in a controlled manner. Materials & methods: FeO nanoparticles were synthesized by chemical and biological methods and modified as ciprofloxacin-PEG-FeO nanoformulations. After initial antibacterial and cytotoxicity studies, the effective and biocompatible nanoformulations was further fabricated as nanotherapeutics for in vivo studies in mouse models. Results: Chemically synthesized ciprofloxacin-PEG-FeO nanoformulations demonstrated boosted antibacterial activity against clinically isolated bacterial strains. Nanoformulations were also found to be compatible with baby hamster kidney 21 cells and red blood cells. In in vivo studies, nanotherapeutic showed wound-healing effects with eradication of Staphylococcus aureus infection. Conclusion: The investigations indicate that the developed nanotherapeutic can eradicate localized infections and enhance wound healing with controlled cytotoxicity.


Assuntos
Antineoplásicos , Nanopartículas , Infecções Estafilocócicas , Cricetinae , Animais , Camundongos , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Antineoplásicos/uso terapêutico
9.
Int J Biol Macromol ; 263(Pt 2): 130387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401586

RESUMO

Alzheimer's disease (AD) is a prevalent form of neurodegenerative disease with a complex pathophysiology that remains not fully understood, and the exact mechanism of neurodegeneration is uncertain. Ferroptosis has been linked to the progression of degenerative diseases observed in AD models. The present study is designed to investigate the protective effects of spermidine, a potent antioxidant and iron chelator, and its synergistic interactions with ciprofloxacin, another iron chelator, in modulating ferroptosis and mitigating AD progression in rats. This study investigated AD-related biomarkers like neurotoxic amyloid beta (Aß), arginase I, and serotonin. Spermidine demonstrated an anti-ferroptotic effect in the AD model, evident from the modulation of ferroptosis parameters such as hippocampus iron levels, reduced protein expression of transferrin receptor 1 (TFR1), and arachidonate 15-lipoxygenase (ALOX15). Additionally, the administration of spermidine led to a significant increase in protein expression of phosphorylated nuclear factor erythroid 2-related factor 2 (p-Nrf2) and upregulation of Cystine/glutamate transporter (SLC7A11) gene expression. Moreover, spermidine notably decreased p53 protein levels, acrolein, and gene expression of spermidine/spermine N1-acetyltransferase 1 (SAT1). Overall, our findings suggest that spermidine and/or ciprofloxacin may offer potential benefits against AD by modulating ferroptosis. Furthermore, spermidine enhanced the antioxidant efficacy of ciprofloxacin and reduced its toxic effects.


Assuntos
Doença de Alzheimer , Ferroptose , Doenças Neurodegenerativas , Ratos , Masculino , Animais , Doença de Alzheimer/tratamento farmacológico , Espermidina/farmacologia , Espermidina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Ciprofloxacina/farmacologia , Quelantes de Ferro/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
10.
Int J Biol Macromol ; 261(Pt 2): 129842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309386

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium with adaptive metabolic abilities. It can cause hospital-acquired infections with significant mortality rates, particularly in people with already existing medical conditions. Its ability to develop resistance to common antibiotics makes managing this type of infections very challenging. Furthermore, oxidative stress is a common consequence of bacterial infection and antibiotic therapy, due to formation of reactive oxygen species (ROS) during their mode of action. In this study we aimed to alleviate oxidative stress and enhance the antibacterial efficacy of ciprofloxacin (CPR) antibiotic by its co-encapsulation with naringin (NAR) within a polyelectrolyte complex (PEX). The PEX comprised of polycationic lactoferrin (LF) and polyanionic pectin (PEC). CPR/NAR-loaded PEX exhibited spherical shape with particle size of 237 ± 3.5 nm, negatively charged zeta potential (-23 ± 2.2 mV) and EE% of 61.2 ± 4.9 for CPR and 76.2 ± 3.4 % for NAR. The LF/PEC complex showed prolonged sequential release profile of CPR to limit bacterial expansion, followed by slow liberation of NAR, which mitigates excess ROS produced by CPR's mechanism of action without affecting its efficacy. Interestingly, this PEX demonstrated good hemocompatibility with no significant in vivo toxicity regarding hepatic and renal functions. In addition, infected mice administrated this nanoplatform intravenously exhibited significant CFU reduction in the lungs and kidneys, along with reduced immunoreactivity against myeloperoxidase. Moreover, this PEX was found to reduce the lungs´ oxidative stress via increasing both glutathione (GSH) and catalase (CAT) levels while lowering malondialdehyde (MDA). In conclusion, CPR/NAR-loaded PEX can offer a promising targeted lung delivery strategy while enhancing the therapeutic outcomes of CPR with reduced oxidative stress.


Assuntos
Flavanonas , Lactoferrina , Pectinas , Humanos , Camundongos , Animais , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pectinas/farmacologia , Pectinas/metabolismo , Antibacterianos/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Ciprofloxacina/farmacologia , Pulmão/metabolismo
11.
Cytokine ; 176: 156515, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290256

RESUMO

Recents reports have shown increases in the abuse of anti-malaria, antibiotic and analgesic drugs. This study evaluated the effects of co-administration of artemether-lumefantrine (AL), ciprofloxacin (CPX) and diclofenac (DFC) on inflammatory and immunological status of female Wistar rats. Ninety-six female Wistar rats were assigned into eight groups of twelve animals each. Group A was control, groups B, C, D, E, F, G and H were administered AL, CPX, DFC, AL + CPX, AL + DFC, CPX + DFC and AL + CPX + DFC respectively. Dosages of administered drugs were 178 mg/kg b/w of AL, 185 mg/kg b/w of CPX and 9 mg/kg b/w of DFC. Animals were sacrificed after 6 and 12 weeks of oral administration. Blood was obtained through cardiac puncture. The liver was harvested and processed for immunohistochemical analysis. Differential leukocyte count and neutrophil adhesion test was conducted on whole blood. Immunological response was assessed by the serum levels of C-reactive protein (CRP), interleukin-1ß (Il-1ß), interleukin-6 (Il-6), monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), myeloperoxidase, and total immunoglobulin G. Data were analyzed with Graph pad prism 5, using one way analysis of variance at 5 % level of significance. Total leukocyte, lymphocyte and basophils count increased (p<0.05) in B, C, E, F, G and H, while neutrophil count decreased (p<0.05) in D, E, G and H at 6 weeks. Neutrophil adhesion decreased (p<0.05) in B, E, F, G and H at 6 weeks. There was no significant difference (p>0.05) in the expression of Il-6, MCP-1 and VCAM-1 across the groups. Il-1ß decreased in H, while CRP increased in H at 6 weeks and 12 weeks. MPO activity decreased (p<0.05) in B, C, D, E, G and H at 6 weeks, but increased (p<0.05) in D and G at 12 weeks. Immunohistochemical analysis indicated increase (p<0.05) in tumour necrosis factor-α in liver tissues of B, C, D, E, F and G, while nuclear factor erythroid 2-related factor 2 increased (p<0.05) in C, D, E, F and G, but decreased (p<0.05) in H at 12 weeks. The co-administration of AL, CPX and DFC induced inflammatory responses with attendant immunological dysfunctions and liver damage.


Assuntos
Antimaláricos , Ratos , Animais , Feminino , Ratos Wistar , Diclofenaco/farmacologia , Combinação Arteméter e Lumefantrina , Ciprofloxacina/farmacologia , Interleucina-6 , Molécula 1 de Adesão de Célula Vascular , Artemeter , Fator de Necrose Tumoral alfa
12.
BMC Microbiol ; 24(1): 9, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172710

RESUMO

BACKGROUND: Enterococcus faecium is a Gram-positive bacterium, naturally present in the human intestinal microbiota, but is also an opportunistic pathogen responsible for healthcare-associated infections. Persisters are individuals of a subpopulation able to survive by arrest of growth coping with conditions that are lethal for the rest of the population. These persistent cells can grow again when the stress disappears from their environment and can cause relapses. RESULTS: In this study, we highlighted that ciprofloxacin (10-fold the MIC) led to the formation of persister cells of E. faecium. The kill curve was typically biphasic with an initial drop of survival (more than 2 orders of magnitude reduction) followed by a constant bacterial count. Growth curves and antimicrobial susceptibility tests of these persisters were similar to those of the original cells. In addition, by genomic analyses, we confirmed that the persisters were genotypically identical to the wild type. Comparative proteomic analysis revealed that 56 proteins have significantly different abundances in persisters compared to cells harvested before the addition of stressing agent. Most of them were related to energetic metabolisms, some polypeptides were involved in transcription regulation, and seven were stress proteins like CspA, PrsA, ClpX and particularly enzymes linked to the oxidative stress response. CONCLUSIONS: This work provided evidences that the pathogen E. faecium was able to enter a state of persister that may have an impact in chronic infections and relapses. Moreover, putative key effectors of this phenotypical behavior were identified by proteomic approach.


Assuntos
Enterococcus faecium , Humanos , Enterococcus faecium/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteômica , Ciprofloxacina/farmacologia , Recidiva , Testes de Sensibilidade Microbiana
13.
Future Microbiol ; 19: 21-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38294294

RESUMO

Aims: Persistent cells are primarily responsible for developing antibiotic resistance and the recurrence of Pseudomonas aeruginosa. This study investigated the possible role of GNAT toxin in persistence. Materials & methods: P. aeruginosa was exposed to five MIC concentrations of ciprofloxacin. The expression levels of target genes were assessed. The GNAT/HTH system was bioinformatically studied, and an inhibitory peptide was designed to disrupt this system. Results: Ciprofloxacin can induce bacterial persistence. There was a significant increase in the expression of the GNAT toxin during the persistence state. A structural study of the GNAT/HTH system determined that an inhibitory peptide could be designed to block this system effectively. Conclusion: The GNAT/HTH system shows promise as a novel therapeutic target for combating P. aeruginosa infections.


Antibiotics are used to treat infections caused by bacteria. Over time, some of these infections have become more difficult to treat. This is because the bacteria can slow their growth and tolerate the antibiotic, known as persistence. It is important to find new ways to treat infections caused by persistent bacteria. This study researched a toxin­antitoxin system, called GNAT/HTH, that may play a role in bacterial persistence. This system could be a target for new antibiotics.


Assuntos
Toxinas Bacterianas , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ciprofloxacina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
14.
J Adv Res ; 55: 33-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36822389

RESUMO

INTRODUCTION: Antibiotic-resistant bacterial infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, are prevalent in lung cancer patients, resulting in poor clinical outcomes and high mortality. Etoposide (ETO) is an FDA-approved chemotherapy drug that kills cancer cells by damaging DNA through oxidative stress. However, it is unclear if ETO can cause unintentional side effects on tumor-associated microbial pathogens, such as inducing antibiotic resistance. OBJECTIVES: We aimed to show that prolonged ETO treatment could unintendedly confer fluoroquinolone antibiotic resistance to P. aeruginosa, and evaluate the effect of tumor-associated P. aeruginosa on tumor progression. METHODS: We employed experimental evolution assay to treat P. aeruginosa with prolonged ETO exposure, evaluated the ciprofloxacin resistance, and elucidated the gene mutations by DNA sequencing. We also established a lung tumor-P. aeruginosa bacterial model to study the role of ETO-evolved intra-tumoral bacteria in tumor progression using immunostaining and confocal microscopy. RESULTS: ETO could generate oxidative stress and lead to gene mutations in P. aeruginosa, especially the gyrase (gyrA) gene, resulting in acquired fluoroquinolone resistance. We further demonstrated using a microfluidic-based lung tumor-P. aeruginosa coculture model that bacteria can evolve ciprofloxacin (CIP) resistance in a tumor microenvironment. Moreover, ETO-induced CIP-resistant (EICR) mutants could form multicellular biofilms which protected tumor cells from ETO killing and enabled tumor progression. CONCLUSION: Overall, our preclinical proof-of-concept provides insights into how anti-cancer chemotherapy could inadvertently allow tumor-associated bacteria to acquire antibiotic resistance mutations and shed new light on the development of novel anti-cancer treatments based on anti-bacterial strategies.


Assuntos
Neoplasias Pulmonares , Infecções por Pseudomonas , Humanos , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Testes de Sensibilidade Microbiana , Ciprofloxacina/farmacologia , Infecções por Pseudomonas/microbiologia , Estresse Oxidativo , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral
15.
Sci Rep ; 13(1): 21519, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057583

RESUMO

The need for an alternative treatment to fight infectious diseases caused by antibiotic-resistant bacteria is increasing. A possible way to overcome bacterial resistance to antibiotics is by reintroducing commonly used antibiotics with a sensitizer capable of enhancing their antimicrobial effect in resistant bacteria. Here, we use a composite composed of exopolysaccharide capped-NiO NPs, with antimicrobial effects against antibiotic-resistant Gram-positive and Gram-negative bacteria. It potentiated the antimicrobial effects of four different antibiotics (ampicillin, kanamycin, chloramphenicol, and ciprofloxacin) at lower concentrations than their minimal inhibitory concentrations. We observed that the Ni-composite synergistically enhanced, fourfold, the antibacterial effect of kanamycin and chloramphenicol against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, as well as ampicillin against multidrug-resistant Staphylococcus aureus, and ciprofloxacin against multidrug-resistant Pseudomonas aeruginosa by eightfold. We also found that Ni-composite could not inhibit biofilm synthesis on the tested bacterial strains. Our results demonstrated the possibility of using metal nanoparticles, like NiO, as a sensitizer to overcome bacterial antibiotic resistance.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Níquel/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cloranfenicol/farmacologia , Ciprofloxacina/farmacologia , Ampicilina/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
16.
Recent Adv Drug Deliv Formul ; 17(4): 286-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018213

RESUMO

BACKGROUND: Cystic fibrosis is the predominant autosomal recessive disorder known to reduce life expectancy. Research findings indicate that around 60 to 70% of adult individuals with this condition carry infections of Pseudomonas aeruginosa. OBJECTIVE: The ongoing research investigates the potential synergy of merging ivacaftor and ciprofloxacin to address bacterial infections. METHODS: The two drugs were spray-dried into microparticles, which were then coated with Lsalbutamol and were to be delivered by a dry powder inhaler. Microparticles were generated by applying the spray drying method, utilizing bovine serum albumin and L-leucine in their preparation. Additionally, L-salbutamol was mixed and adsorbed onto the surface of the spray-dried microparticles, and it acted as a bronchodilator. RESULTS: The microparticles produced via spray drying exhibited a particle size measuring 1.6 ± 0.04 µm, along with a polydispersity ratio of 0.33. Their zeta potential measured -27.3 ± 1.1 mV, while the mass median aerodynamic diameter of these microparticles was 3.74 ± 0.08 µm. SEM, XRD, and FTIR studies confirmed the entrapment of ivacaftor and ciprofloxacin. The morphology was observed by SEM and TEM scans. Antibacterial synergy was confirmed through the agar broth and dilution method, and the formulation's safety was established based on the outcomes of the MTT assay. CONCLUSION: Using spray-dried microparticles containing ciprofloxacin, ivacaftor, and L-salbutamol presents a novel approach to the treatment of cystic fibrosis.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Albuterol
17.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834266

RESUMO

A novel derivative of ciprofloxacin (Cpx) was synthesized and characterized using various analytical techniques, including FT-IR spectroscopy, UV-Vis spectroscopy, TEM and SEM analysis, 1H NMR, 13C NMR, and HPLC analysis. The newly prepared Cpx derivative (Cpx-Drv) exhibited significantly enhanced antibacterial properties compared to Cpx itself. In particular, Cpx-Drv demonstrated a 51% increase in antibacterial activity against S. aureus and a 30% improvement against B. subtilis. It displayed potent inhibitory effects on topoisomerases II (DNA gyrase and topoisomerase IV) as potential molecular targets, with IC50 values of 6.754 and 1.913 µg/mL, respectively, in contrast to Cpx, which had IC50 values of 2.125 and 0.821 µg/mL, respectively. Docking studies further supported these findings, showing that Cpx-Drv exhibited stronger binding interactions with the gyrase enzyme (PDB ID: 2XCT) compared to the parent Cpx, with binding affinities of -10.3349 and -7.7506 kcal/mole, respectively.


Assuntos
Ciprofloxacina , Staphylococcus aureus , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Antibacterianos/química , DNA Girase , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
18.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37777836

RESUMO

Bacterial population exposed to stressful antibiotic conditions consists of various subpopulations such as tolerant, persister, and resistant cells. The aim of this study was to evaluate the phenotypic heterogeneity of Salmonella Typhimurium preadapted to sublethal concentrations of antibiotics. Salmonella Typhimurium cells were treated with 1/2 × MIC of antibiotics for the first 48 h and successively 1 × MIC for the second 24 h at 37°C, including untreated control (CON), no antibiotic and 1 × MIC ciprofloxacin (NON-CIP), 1/2 × MIC ciprofloxacin and 1 × MIC ciprofloxacin (CIP-CIP), 1/2 × MIC tetracycline and 1 × MIC ciprofloxacin (TET-CIP), no antibiotic and 1 × MIC tetracycline (NON-TET), 1/2 × MIC ciprofloxacin and 1 × MIC tetracycline (CIP-TET), and 1/2 × MIC tetracycline and 1 × MIC tetracycline (TET-TET). All treatments were evaluated by antibiotic susceptibility, ATP level, relative fitness, cross-resistance, and persistence. S. Typhimurium cells were more susceptible to non-adapted NON-CIP and NON-TET (>3-log reduction) than pre-adapted CIP-CIP, TET-CIP, CIP-TET, and TET-TET. CON exhibited the highest ATP level, corresponding to the viable cell number. The relative fitness levels were more than 0.95 for all treatments, except for NON-CIP (0.78). The resistance to ciprofloxacin and tetracycline was increased at all treatments with the exception of NON-TET. The persister cells were noticeably induced at CIP-TET treatment, showing more than 5 log CFU mL-1. The results suggest that the antibiotic preadaptation led to heterogeneous populations including persisters that can develop to resistance. This study provides new insight in the bacterial persistence associated with their potential risk and paves the way to design antibiotic therapy targeting dormant bacteria.


Assuntos
Ciprofloxacina , Salmonella typhimurium , Ciprofloxacina/farmacologia , Salmonella typhimurium/genética , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Trifosfato de Adenosina , Testes de Sensibilidade Microbiana
19.
Antimicrob Agents Chemother ; 67(11): e0068223, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819115

RESUMO

The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this opportunistic pathogen to antibiotic therapy makes the development of novel antimicrobial strategies an urgent need. We previously found that D,L-malic acid potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium by increasing metabolic activity and tricarboxylic acid cycle activity. This suggested a potential new strategy to improve antibiotic therapy in P. aeruginosa infections. Considering the importance of the microenvironment on microbial antibiotic susceptibility, the present study aims to further investigate the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models, aiming to mimic the infection environment more closely. We used Caenorhabditis elegans nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with D,L-malate significantly improved the survival of infected 3-D cells compared to ciprofloxacin alone. No significant effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the outcome of the experiment is influenced by the model system used which emphasizes the importance of using models that reflect the in vivo environment as closely as possible. Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin activity against P. aeruginosa-associated infections.


Assuntos
Ciprofloxacina , Infecções por Pseudomonas , Animais , Humanos , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Malatos/farmacologia , Malatos/uso terapêutico , Caenorhabditis elegans , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Larva , Testes de Sensibilidade Microbiana
20.
Microb Biotechnol ; 16(11): 2072-2081, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602720

RESUMO

High quinolone resistance of Escherichia coli limits the therapy options for urinary tract infection (UTI). In response to the urgent need for efficient treatment of multidrug-resistant infections, we designed a fimbriae targeting superparamagnetic iron oxide nanoparticle (SPION) delivering ciprofloxacin to ciprofloxacin-resistant E. coli. Bovine serum albumin (BSA) conjugated poly(acrylic acid) (PAA) coated SPIONs (BSA@PAA@SPION) were developed for encapsulation of ciprofloxacin and the nanoparticles were tagged with 4-aminophenyl-α-D-mannopyrannoside (mannoside, Man) to target E. coli fimbriae. Ciprofloxacin-loaded mannoside tagged nanoparticles (Cip-Man-BSA@PAA@SPION) provided high antibacterial activity (97.1 and 97.5%, respectively) with a dose of 32 µg/mL ciprofloxacin against two ciprofloxacin-resistant E. coli isolates. Furthermore, a strong biofilm inhibition (86.9% and 98.5%, respectively) was achieved in the isolates at a dose 16 and 8 times lower than the minimum biofilm eradication concentration (MBEC) of ciprofloxacin. Weaker growth inhibition was observed with untargeted nanoparticles, Cip-BSA@PAA@SPIONs, confirming that targeting E. coli fimbria with mannoside-tagged nanoparticles increases the ciprofloxacin efficiency to treat ciprofloxacin-resistant E. coli. Enhanced killing activity against ciprofloxacin-resistant E. coli planktonic cells and strong growth inhibition of their biofilms suggest that Cip-Man-BSA@PAA@SPION system might be an alternative and/or complementary therapeutic option for the treatment of quinolone-resistant E. coli infections.


Assuntos
Infecções por Escherichia coli , Quinolonas , Humanos , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Quinolonas/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Nanopartículas Magnéticas de Óxido de Ferro , Biofilmes , Manosídeos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA